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Abstract—This paper describes the work that is being done by 

MIT Lincoln Laboratory (MIT LL) to develop a real-time signal 
processing testbed for DARPA’s Knowledge-Aided Sensor 
Signal Processing and Expert Reasoning (KASSPER) project.  
 

Index Terms—KASSPER, real-time testbed, signal processor, 
implementation 

I. INTRODUCTION 

HIS paper describes the work which is being done by MIT 
Lincoln Laboratory (MIT LL) to develop a real-time signal 

processing testbed for the Knowledge Aided Sensor Signal 
Processing and Expert Reasoning (KASSPER) project.  The 
goal of the KASSPER project is to improve the performance of 
Ground Moving Target Indicator (GMTI) radar systems by 
making use of a-priori data and/or expert reasoning techniques. 
The first section of this paper will describe the signal 
processing testbed itself. The second part of the paper will 
describe the Parallel Vector Library (PVL), which is a parallel 
signal processing middleware that as been developed at MIT 
LL and will be as part of the testbed’s software infrastructure. 

II. THE KASSPER SIGNAL PROCESSING TESTBED 

The goal of the real-time testbed is to provide a means to 
explore the implementation issues related to KASSPER 
processing. In order to achieve this, the design of the system 
will be driven by a few key system level concepts. These 
system level concepts will drive the selection of the real-time 
testbed’s software architecture. The system level concepts and 
software architecture are intentionally generic with respect to 
any real-time signal processor that could be used. A brief 
description of the signal processor that will be used in the real-
time testbed will also be provided.  
 

A. System Level Concepts 

 
Look ahead scheduling, KASSPER algorithm implementation, 
and intelligent caching are areas that MIT LL will be 
investigating. In this section, we will discuss each of these 
concepts  
 

The concept behind “look ahead scheduling” is that the radar 
system needs to combine knowledge of the goals of the 
system’s current mission with knowledge about the external 
environment that the system finds itself in order to pre-
schedule the system’s processing timeline some amount of 
time into the future. For instance, the system may be able to 
determine that there are optimum directions from which to view 
an area of interest. The system can then schedule the viewing 
of different regions such that each is viewed from the “best” 
direction.  
 
In order to effectively implement KASSPER signal processing 
algorithms, the computational requirements, data transfer 
bandwidth requirements, and the amount of inherent 
parallelism for each algorithm will need to be assessed. For 
instance, KASSPER signal processing algorithms will use 
environmental a-priori knowledge to augment their processing 
of radar returns.  The amount of potential a-priori data (i.e., 
Digital Terrain Elevation Data (DTED) databases, etc.), a very 
large amount of additional processing and/or data movement 
may also be necessary. Both the computational and data 
handling characteristics of potential KASSPER algorithms 
need to be studied in order to determine the best 
implementation approach. 
 
KASSPER processing that depends on a-priori knowledge will 
rely on prompt real-time access to that knowledge when the 
processing is performed. The potentially very large volume of 
a-priori data that must be available will require that the data will 
be stored on magnetic disks. Since the latency of accessing 
such a disk based database can be large, it will be necessary to 
intelligently pre-load a knowledge cache with the data that the 
processor will need in the near future. 
 

B. Processor Architecture 

Two key observations that result from the above system level 
concepts are that a real-time knowledge data will be required 
and that multiple signal processing algorithms (i.e., multiple 
processor modes) must be supported. This section will provide 
a high level description of these aspects of the processor 
architecture. 
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A block diagram of the knowledge database architecture is 
shown in Fig. 1.  The knowledge database provides storage for 
a-priori information that can be used as input to KASSPER 
processing algorithms. The amount of a-priori data can be very 
large and it is assumed that secondary mass storage such as 
hard disks will be necessary. From a real-time point of view the 
long latency that is incurred when accessing data from a hard 
disk is unacceptable. The a-priori data must therefore be pre-
loaded into a cache by the processor in advance of the data 
actually being used. Since the radar’s processing is being 
scheduled into the future via look ahead scheduling, the cache 
mechanism can use the projected schedule along with the 
platform’s environment data to select the appropriate 
knowledge data to be loaded and/or dropped out of the 
knowledge cache. Note that the scheduler must keep a running 
index of the current location of all knowledge data so that it 
can manage the contents of the knowledge cache. 
 
Note that knowledge data typically cannot be directly used as 
it comes out of the knowledge database. For instance, 
geographic coordinates (longitude, latitude) need to be 
transformed into radar system coordinates (beam, range cell) 
before they can be used. Some amount of pre-processing will 
almost certainly be needed for all data retrieved from the 
knowledge database. 
 

 

Fig. 1.  Knowledge Database Architecture Block Diagram 

 
A block diagram of the testbed’s mult-mode architecture is 
shown in Fig. 2.  Due to the complexity of the “real world” 
environment, it is expected that both traditional GMTI, 
Synthetic Aperture Radar (SAR), as well as GMTI/SAR 
variants might be necessary to achieve the desired radar 
detection performance. The system must therefore support 
multiple processing algorithms and allow switching between 
them at runtime based on the current conditions. This can 
thought of as a set of independent processing pipelines where 
each pipeline implements a different algorithm. Input data can 
be directed to the appropriate algorithm pipeline and the 
results gathered from the output of that pipeline. 

 
 

Fig. 2.  Multi-mode Architecture Block Diagram 

Note that these pipelines should be thought of as logical 
pipelines rather than physical pipelines. When these 
algorithms are implemented on a real-time signal processor, 
they will simply be different processing modes within the 
application software. 
 
In order to prototype the multi-mode architecture, the baseline 
GMTI algorithm shown in Fig. 3 and the baseline SAR 
algorithm shown in Fig. 4 have been defined. These algorithms 
are traditional GMTI and SAR algorithms that make no use of 
KASSPER concepts.  However, the overall processor 
architecture will support the inclusion of knowledge so these 
implementations can be used as a basis for implementing other 
algorithms which do use KASSPER concepts. 
 

 

Fig. 3.  Baseline GMTI Algorithm Block Diagram 

 

 

Fig. 4.  Baseline SAR Algorithm Block Diagram 
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C. Processor Hardware Architecture 

The testbed signal processor is based on a Mercury Computer 
Systems parallel multi-processor. Note that this processor is 
typical of the real-time processors that are used to implement 
radar signal processors and is therefore a reasonable system 
on which to investigate KASSPER algorithm implementation 
issues. The Mercury processor, when fully expanded, will have 
120 Power PC G4 processors. This will provide an aggregate 
peak computational throughput of approximately 480 
Gflop/sec. This processor is based on Mercury’s Power Stream 
architecture, which delivers approximately 8.5 Gbyte/second of 
communication bandwidth (bisection bandwidth). 
 
One of the goals of the testbed hardware environment is to 
provide interfaces to the signal processor that are similar to the 
interfaces that could be encountered on an actual platform. In 
the event this processor is integrated onto an actual platform 
this approach will allow many of the real-time timing and 
control issues to be worked out prior to attempting to integrate 
the processor with the platform. 

III. THE DEVELOPMENT PROCESS 

The software development team at MIT LL follows the process 
that is diagrammed in Fig. 5. The four major steps in this 
process are algorithm design, algorithm verification, software 
design, and software implementation. 

 

Fig. 5. Real-time Testbed Software Development Process 

 
An algorithm team will perform the algorithm design and 
verification. The algorithm team will then produce a Matlab 
reference implementation of the algorithm and an algorithm 
specification document. This algorithm team could be either a 
MIT LL team or a team within some other KASSPER 
contributor.  The MIT LL software development team will 
perform the software design and implementation. The software 
development team will produce a Preliminary Design Review 
document (PDR, a high level software design) and the actual 
application code. This process has proven to enable both 
higher software productivity and, therefore, quicker algorithm 
insertion. 
 

IV. THE PARALLEL VECTOR LIBRARY 

A. The Motivation for Creating PVL 

Developing high-performance parallel signal processing 
software has traditionally been very difficult. Making a parallel 
application both portable and scalable adds even more 
difficulty. Also, rapid prototyping is difficult when developing 
directly on a real-time processor. It has long been realized in 
the scientific computing community that an appropriate 
computational middleware can greatly ease parallel software 
development. However, the type of problems which scientific 
programming has traditionally addressed (i.e., solution of a 
single large set of linear equations) is not a good match for the 
structure of many signal-processing problems (i.e., processing 
pipelines which compute a large number of relatively small 
problems on streaming data). PVL leverages a number of the 
techniques developed for scientific parallel computing to 
produce a middleware that is more suited to parallel signal 
processing. 

B. Parallel Signal Processing Application Concepts 

Many signal processing problems can be visualized by a signal 
flow graph (i.e., boxes which represent data transformations 
connected by arrows representing data movement). PVL 
represents the computation blocks as objects called Tasks and 
the communication flows as objects called Conduits. Fig. 6 
shows a simple application consisting of tasks that supply 
data, perform computation, and consume results. 
 

 

Fig. 6.  Simple Pipelined Application 

 
Note that each Task contains parallel data objects and/or 
parallel computation objects. All of these objects (including 
Tasks) are ‘mappable’. The mapping of a parallel object is a 
description of the way in which that object is distributed 
across the computational elements of the parallel processor.  

C. Application Development and Mapping 

 
A common approach to developing parallel software is to write 
a single application that is run across all of the processors. 
This is known as the Single Program Multiple Data  (SPMD) 
model. Note that each processor must decide which portion of 
the application’s processing it will perform based upon the 
application’s mapping. A traditional way of writing such 
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applications is to directly code this decision logic into the 
application. While this can and has worked in the past, the 
application becomes brittle with respect to scaling. For 
instance, if the number of processors needs to be changed 
then modifications to the application source code become 
necessary. It also becomes necessary to make coordinated 
changes in portions of the application that are inter-related. 
This makes code maintainability difficult and costly. Moving 
this decision logic into a middleware library is a significant 
improvement since the logic is concentrated in the library 
rather than scattered throughout the application. Since this a 
common problem across many applications, a middleware 
solution also avoids re-implementing the functionality for each 
application. 
 
The work performed by MIT LL on previous parallel processor 
efforts resulted in a number of observations and insights that 
influenced the design of PVL: 

• Algorithm implementation and mapping of the 
application to the signal processor should be as 
orthogonal as possible. Changing the scaling (i.e., 
number of processors) or the processor CPU 
architecture can happen both during development 
and as technology upgrades are added in the field. 
Application re-writes as a result of this are expensive 
both during development and during system 
maintenance. 

• Computation and communication should be seamless 
from the application’s point of view. The more that 
the parallel architecture of the runtime system 
becomes visible to the application the more changes 
in scaling and architecture affect the application code. 
Ideally, communication should be performed implicitly 
as needed based on the mapping of the data objects 
and the operations being performed on them. 

• The combination of the previous two points makes 
rapid prototyping easier since application code can be 
portable between workstation and real-time 
environments. Workstations or a network of 
workstations (NOW) have excellent debugging tools, 
are readily available, and are relatively inexpensive. 
Real-time parallel processors tend to have less mature 
debugging tools, are expensive and therefore scarce. 
Developing a functionally correct application in a 
workstation or NOW environment and then moving 
the application onto the real-time parallel processor 
environment to address real-time issues results in an 
overall development methodology which leverages 
the best strengths of each available tool. 

• Much of the code in an application does not affect 
the actual performance of the application (i.e., setup 
or error handling code). Approximately 90% of the 
signal processing workload comes from approximately 
10% of the code. Object oriented techniques can be 
used to make the 90% of the code that is not critical to 
performance as easy to develop as possible. 

• There will always be some application specific 
computational kernels that a general-purpose library 
such as PVL will not support. The library must 
therefore supply data access ‘hooks’ which allow 
such computational kernels to be built by the 
application programmer in an efficient manner.  

D. A Simple PVL Example 

The following very simple code example highlights several key 
PVL attributes.  
 

1. #include <Vector.h> 
2. #include <AddPvl.h> 
3. void addVectors(aMap, bMap, cMap) { 
4.     Vector< Complex<Float> > a(‘a’, aMap, LENGTH); 
5.     Vector< Complex<Float> > b(‘b’, bMap, LENGTH); 
6.     Vector< Complex<Float> > c(‘c’, cMap, LENGTH); 
7. a = 0;  b = 1;  c = 2; 
8. a=b+c; 
9. } 

 
Vector (see lines 4,5,6) is a class that provides an abstraction 
of a mathematical vector. The Complex<Float> between 
brackets is a template parameter indicating that the elements in 
the vector are complex and that the real and imaginary parts are 
each of type Float. Note that a map is supplied to create each 
Vector. The operations on lines 7 (filling the vectors with a 
value) and line 8 (placing the element-wise sum of two vectors 
into a third vector) remain the same regardless of the maps 
supplied to the vectors. If any communications is necessary to 
perform the operations, then it happens ‘under the covers’ and 
is of no concern (functionally) to the application programmer. 

E. The structure of PVL 

Since PVL is a middleware, it provides services to an 
application program via an Application Programming Interface 
(API) and makes use of the services of other supporting 
libraries via their APIs. PVL is typically built to use the Vector, 
Signal, and Image Processing Library (VSIPL) to perform 
computation and the Message Passing Interface (MPI) to 
perform communication. Both of these are open standard APIs. 
PVL itself, and therefore PVL applications, are very portable 
between platforms that support VSIPL and MPI.  
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Fig. 7.  PVL Architecture 

F. Future Directions for PVL 

There are two additional efforts that have grown out of MIT 
LL’s work on PVL. 
 
Hardware PVL (HPVL) extends PVL by including support for 
computational resources such as Field Programmable Gate 
Arrays (FPGAs) and Application Specific Integrated Circuits 
(ASICs). In some cases these may be a more appropriate 
choice for implementing an algorithm than a general purpose. 
The goal of HPVL is to develop an architecture that will allow 
processing to be mapped to either software based 
computational kernels or hardware based computational 
kernels. 
 
Parallel Matlab provides PVL-like parallel constructs within 
Matlab programs. A unique feature of Parallel Matlab is that 
the middleware is implemented entirely in Matlab code. Parallel 
Matlab programs should therefore be portable to any platform 
that is able to run Matlab. 
 

V. SUMMARY 

MIT LL has made significant progress defining system level 
concepts as well as the software and hardware architectures 
that will be used in the KASSPER real-time testbed. Over the 
next year we will begin developing prototype implementations 
these architectures on the Mercury parallel processor. In 
addition, we will continue our ongoing work on implementing 
our baseline processing algorithms. 


